二次根式教案

时间:2024-05-21 01:11:20
二次根式教案汇总8篇

二次根式教案汇总8篇

作为一名教职工,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?以下是小编精心整理的二次根式教案8篇,仅供参考,欢迎大家阅读。

二次根式教案 篇1

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的.意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本P20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,

化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

二次根式教案 篇2

教材分析:

本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

学生分析:

本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

设计理念:

新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

教学目标知识与技能目标:

会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

过程与方法目标:

通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的`过程,发展学生的抽象概括能力。

情感态度与价值观:

通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.

重点、难点:重点:

合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

难点:

二次根式加减法的实际应用。

关键问题 :

了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

教学方法:.

1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

二次根式教案 篇3

【 学习目标 】

1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

【 学习重难点 】

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

【 学习内容 】课本第2— 3页

【 学习流程 】

一、 课前准备(预习学案见附件1)

学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、 课堂教学

(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。(15分钟左右)

1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2. 教师对合作学习中存在的普遍的.不能解决的问题进行集体讲解。

3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段

为了及时了解本节课学生的学习效果,及对本节课进行及 ……此处隐藏1730个字……动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

【设计意图】为概括二次根式的概念作铺垫.

2.抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.

3.辨析概念,应用巩固

例1 当 时怎样的实数时, 在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.

例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

师生活动:先让学生独立思考,再追问.

【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.

问题4 你能比较 与0的大小吗?

师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.

4.综合运用,巩固提高

练习1 完成教科书第3页的练习.

练习2 当x 是什么实数时,下列各式有意义.

(1) ;(2) ;(3) ;(4) .

【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件.

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.

5.总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

师生活动:教师引导,学生小结.

【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.

6.布置作业:

教科书习题16.1第1,3,5, 7,10题.

五、目标检测设计

1. 下列各式中,一定是二次根式的是( )

A. B. C. D.

【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.

2. 当 时,二次根式 无意义.

【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.

3.当 时,二次根式 有最小值,其最小值是 .

【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.

4.对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.

【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.

二次根式教案 篇7

1.请同学们回忆(≥0,b≥0)是如何得到的?

2.学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

(≥0,b0)

使学生回忆起二次根式乘法的运算方法的推导过程.

类似地,请每个同学再举一个例子,

请学生们思考为什么b的取值范围变小了?

与学生一起写清解题过程,提醒他们被开方式一定要开尽.

对比二次根式的乘法推导出除法的运算方法

增强学生的自信心,并从一开始就使他们参与到推导过程中来.

对学生进一步强化被开方数的取值范围,以及分母不能为零.

强化学生的解题格式一定要标准.

教学过程设计

问题与情境师生行为设计意图

活动二自我检测

活动三挑战逆向思维

把反过来,就得到

(≥0,b0)

利用它就可以进行二次根式的化简.

例2化简:

(1)

(2)(b≥0).

解:(1)(2)练习2化简:

(1)(2)活动四谈谈你的收获

1.商的`算术平方根的性质(注意公式成立的条件).

2.会利用商的算术平方根的性质进行简单的二次根式的化简.

找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

二次根式的乘法公式可以逆用,那除法公式可以逆用吗?

找学生口述解题过程,教师将过程写在黑板上.

请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

请学生自己谈收获,并总结本节课的主要内容.

为了更快地发现学生的错误之处,以便纠正.

此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

让学困生在自己做题时有一个参照.

充分发挥组长的作用,尽可能在课堂上将问题解决.

二次根式教案 篇8

教学设计思想

新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。

教学目标

知识与技能

1.知道什么是二次根式,并会用二次根式的意义解题;

2.熟记二次根式的.性质,并能灵活应用;

过程与方法

通过二次根式的概念和性质的学习,培养逻辑思维能力;

情感态度价值观

1.经历将现实问题符号化的过程,发展应用的意识;

2.通过二次根式性质的介绍渗透对称性、规律性的数学美。

教学重点和难点

重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;

难点:确定二次根式中字母的取值范围。

教学方法

启发式、讲练结合

教学媒体

多媒体

课时安排

1课时

《二次根式教案汇总8篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式